

High Pressure Filters

HD 037 · HD 057 · HD 077 · HD 097

In-line mounting · Operating pressure up to 500 bar / 7252 psi · Nominal flow rate up to 120 l/min / 31.7 gpm

High Pressure Filter HD 077

Description

Application

In the high-pressure circuits of hydraulic systems.

Performance features

Protection against wear:

By means of filter elements that even in full-flow filtration meet the highest demands regarding cleanliness classes.

Protection against malfunction:

By installation directly in front of the hydraulic components. The specific determined flow rate guarantees a closed by-pass valve even at $\leq 200 \text{ mm}^2\text{/s}$ / 927 SUS (cold start condition).

Filter elements

Flow direction from outside to center.

The star-shaped pleating of the filter material results in:

- > large filter surfaces
-) low pressure drop
- > high dirt-holding capacities
- particularly long maintenance intervals

Filter maintenance

By using a clogging indicator, the correct moment for maintenance is stated and an optimal utilization of the filter service life is achieved.

Materials

Filter head: Spheroidal graphite cast iron (SGI)

Filter bowl: Cold extruded steel

Coating: Powder paint resp. primed / phosphated

Seals: NBR (FPM on request)

Filter media: EXAPOR®MAX 2 - inorganic multi-layer

microfiber web

Accessories

Electrical and / or optical clogging indicators are available on request. Dimensions and technical data see catalog sheet 60.40.

www.argo-hytos.com Page 299

Operating pressure

0 ... 350 bar / 4352 psi, min. 2 x 10^6 pressure cycles Nominal pressure according to DIN 24550

0 ... 500 bar / 7252 psi, min. 10⁴ pressure cycles Quasi-static operating pressure

Permissible pressures for other numbers of cycles

Nominal flow rate

Up to 120 l/min / 31.7 gpm (see Selection Charts, column 2) The nominal flow rates indicated by ARGO-HYTOS are based on the following features:

- closed by-pass valve at $v \le 200 \text{ mm}^2/\text{s} / 927 \text{ SUS}$
- element service life > 1000 operating hours at an average fluid contamination of 0.07 g per l/min / 0.27 g per gpm flow volume
-) flow velocity in the connection lines: up to 250 bar \leq 8 m/s / up to 3626 psi \leq 26.3 ft/s > 250 bar \leq 12 m/s / > 3626 psi \leq 39.4 ft/s

Filter fineness

10 μ m(c) ... 16 μ m(c) β -values according to ISO 16889 (see Selection Charts, column 4 and diagram Dx).

Dirt-holding capacity

Values in g test dust ISO MTD according to ISO 16889 (see Selection Charts, column 5).

Hydraulic fluids

Mineral oil and biodegradable fluids (HEES and HETG, see info-sheet 00.20).

Temerature range

-30 °C ... +100 °C (temporary -40 °C ... +120 °C) -22 °F ... +212 °F (temporary -40 °F ... +248 °F)

Viscosity at nominal flow rate

- > at operating temperature:v < 60 mm²/s / 280 SUS
- as starting viscosity: $v_{max} = 1200 \text{ mm}^2/\text{s} / 5560 \text{ SUS}$
- > at initial operation:

The recommended starting viscosity can be read from the diagram D (pressure drop as a function of the kinematic viscosity) as follows: Find the 70% Δp of the cracking pressure of the by-pass valve on the vertical axis. Draw a horizontal line so that it intersects the Δp curve at a point. Read this point on the horizontal axis for the viscosity.

Mounting position

Preferably vertical, filter head on top.

Connection

Threaded ports according to

-) ISO 228 or DIN 13
- > SAE standard J514

Sizes see Selection Charts, column 6 (other port threads on request).

∆p-curves for complete filters in Selection Charts, column 3

Pressure drop as a function of the **flow volume** at $v = 35 \text{ mm}^2/\text{s} / 162 \text{ SUS } (0 = \text{casing empty})$

Pressure drop as a function of the **kinematic viscosity** at nominal flow

Pressure drop as a function of the **flow volume** at $v = 35 \text{ mm}^2/\text{s}$ / 162 SUS (0 = casing empty)

Pressure drop as a function of the **kinematic viscosity** at nominal flow

Pressure drop as a function of the **flow volume** at $v = 35 \text{ mm}^2/\text{s} / 162 \text{ SUS } (0 = \text{casing empty})$

Pressure drop as a function of the **kinematic viscosity** at nominal flow

www.argo-hytos.com Page 301

∆p-curves for complete filters in Selection Charts, column 3

Pressure drop as a function of the **flow volume** at $v = 35 \text{ mm}^2/\text{s}$ / 162 SUS (0 = casing empty)

Pressure drop as a function of the **kinematic viscosity** at nominal flow

Filter fineness curves in Selection Charts, column 4

Dx Filtration ratio β as a function of particle size x obtained by the Multi-Pass Test according to ISO 16889

The abbreviations represent the following β -values resp. finenesses:

For EXAPOR®MAX2 and Paper elements:

5EX2	=	$\overline{\beta}_{5 (c)}$	= 200	EXAPOR®MAX 2
7EX2	=	$\overline{\underline{\beta}}_{7 \text{ (c)}}^{3 \text{ (c)}}$	= 200	EXAPOR®MAX 2
10EX2	=	$\overline{\underline{\beta}}_{10 \text{ (c)}}$	= 200	EXAPOR®MAX 2
16EX2	=	$\overline{\underline{\beta}}_{16 \text{ (c)}}$	= 200	EXAPOR®MAX 2
30P	=	$\overline{\beta}_{30}$ (c)	= 200	Paper

Based on the structure of the filter media of the 30P paper elements, deviations from the printed curves are quite probable.

For screen elements:

Efficiency [%]

405	=	screen material with mesh size	40 µm
60S	=	screen material with mesh size	60 µm
100S	=	screen material with mesh size	100 μm
Tolera	nces	for mesh size according to DIN 41	89

For special applications, finenesses differing from these curves are also available by using special composed filter media.

Soft No.	_k uri	Round St.		O' Jin	ot Come	jin ko (cô	in the same		serett.		Series Series
	l/min			g		bar			kg		
1	2	3	4	5	6	7	8	9	10	11	12
HD 037-156 ¹	45	D1 /1	10EX2	7.3	G1⁄2	7	1	V3.0507-06	3.7	-	
HD 037-158 ¹	50	D1 /2	16EX2	7.3	G1⁄2	7	1	V3.0507-08	3.7	-	
HD 037-168	50	D1 /2	16EX2	7.3	G½	7	1	V3.0507-08	3.7	-	2
HD 057-156 ¹	60	D2 /1	10EX2	12	G1/2	7	1	V3.0511-06	4.3	-	
HD 057-158 ¹	65	D2 /2	16EX2	13	G1/2	7	1	V3.0511-08	4.3	-	
HD 057-168	65	D2 /2	16EX2	13	G1/2	7	1	V3.0511-08	4.3	-	2
HD 077-156 ¹	95	D3 /1	10EX2	16	G¾	7	1	V3.0515-06	4.9	-	
HD 077-158 ¹	110	D3 /2	16EX2	19	G¾	7	1	V3.0515-08	4.9	-	
HD 097-156 ¹	105	D4 /1	10EX2	23	G3⁄4	7	1	V3.0522-06	5.4	-	
HD 097-158 ¹	120	D4 /2	16EX2	25	G¾	7	1	V3.0522-08	5.4	-	

¹ Preferred type, no minimum order quantity required

Clogging indicator (code) -

Optical or electrical clogging indicators are available to monitor the clogging condition of the element. When ordering filters with integrated monitoring, the code of the clogging indicator (to be found in catalog sheet 60.40, column 2) has to be added to the part no. of the desired filter (basic unit).

For the appropriate clogging indicator see catalog sheet 60.40. The desired clogging indicator model is indicated by the code (Selection Charts, column 2).

Oder example: The filter HD 057-158 is to	o be supplied with an optical indicator with automatic reset.
Order code:	HD 057-158 OD1
Part No. (basic unit)	

Remarks:

- > The switching pressure of the clogging indicator has always to be lower than the cracking pressure of the by-pass valve (see Selection Charts, column 7).
- > For versions with electrical clogging indicator, the device socket is not included in the scope of delivery.
- > For the electrical clogging indicator of type ED8, a transparent device socket with two LEDs is available, which additionally enables visual indication of the filter contamination (order no. DG 041.1200).
- > The filters listed in this chart are standard filters. Other designs, e.g. without bypass or with horizontal oriented clogging indicator, available on request.

www.argo-hytos.com Page 303

² Housing primed / phosphated

Parino.	_N ot	THO SE	100 0 10 10 10 10 10 10 10 10 10 10 10 1		one Court	ijon k [®]	Sile Sile	A SE	Selection of the select		A COUNTY OF THE PROPERTY OF TH
	gpm			g	SAE	psi			lbs		
1	2	3	4	5	6	7	8	9	10	11	12
HD 037-756 ¹	11.9	D1 /1	10EX2	7.3	-8 ³	102	1	V3.0507-06	8.2	-	
HD 037-758 ¹	13.2	D1 /2	16EX2	7.3	-8 ³	102	1	V3.0507-08	8.2	-	
HD 037-768	13.2	D1 /2	16EX2	7.3	-8 ³	102	1	V3.0507-08	8.2	-	2
HD 057-756 ¹	15.9	D2 /1	10EX2	12	-8 ³	102	1	V3.0511-06	9.5	-	
HD 057-758 ¹	17.2	D2 /2	16EX2	13	-8 ³	102	1	V3.0511-08	9.5	-	
HD 057-768	17.2	D2 /2	16EX2	13	-8 ³	102	1	V3.0511-08	9.5	-	2
HD 077-756 ¹	25.1	D3 /1	10EX2	16	-124	102	1	V3.0515-06	10.8	-	
HD 077-758 ¹	29.1	D3 /2	16EX2	19	-124	102	1	V3.0515-08	10.8	-	
HD 097-756 ¹	27.7	D4 /1	10EX2	23	-12 ⁴	102	1	V3.0522-06	11.9	-	
HD 097-758 ¹	31.7	D4 /2	16EX2	25	-124	102	1	V3.0522-08	11.9	-	

¹ Preferred type, no minimum order quantity required

Optical or electrical clogging indicators are available to monitor the clogging condition of the element. When ordering filters with integrated monitoring, the code of the clogging indicator (to be found in catalog sheet 60.40, column 2) has to be added to the part no. of the desired filter (basic unit).

For the appropriate clogging indicator see catalog sheet 60.40. The desired clogging indicator model is indicated by the code (Selection Charts, column 2).

Oder example: The filter HD 057-758 is to be supplied with an optical indicator with automatic reset.

Order code:	HD 057-758 OD)1
Part No. (basic unit)		
Clogging indicator (code)		

Remarks:

- > The switching pressure of the clogging indicator has always to be lower than the cracking pressure of the by-pass valve (see Selection Charts, column 7).
- > For versions with electrical clogging indicator, the device socket is not included in the scope of delivery.
- > For the electrical clogging indicator of type ED8, a transparent device socket with two LEDs is available, which additionally enables visual indication of the filter contamination (order no. DG 041.1200).
- > The filters listed in this chart are standard filters. Other designs, e.g. without bypass or with horizontal oriented clogging indicator, available on request.

Page 304 www.argo-hytos.com

³ Corresponds to ³/₄ UNF-2B

² Housing primed / phosphated

⁴ Corresponds to 1¹/₁₆-12 UN-2B

Measurements in mm

Туре	A/B	С	D	E	F	G	Н	I	K	L	M Ødepth	N	0	Р	Q	R	S	Т	U
HD 037	G1/2	34	122	35	55	90	76	57	AF36	50	M8/16	40	90	72.5	AF24	89.5	□ 30	25	91
HD 057	G1/2	34	168	35	55	90	76	57	AF36	50	M8/16	40	90	72.5	AF24	89.5	□ 30	25	91
HD 077	G¾	36	219	35	55	90	76	57	AF36	50	M8/16	40	90	72.5	AF24	89.5	□ 30	25	91
HD 097	G¾	36	261	35	55	90	76	57	AF36	50	M8/16	40	90	72.5	AF24	89.5	□ 30	25	91

Measurements in inch

Туре	A/B SAE	С	D	Е	F	G	Н	I	K mm	L	M Ødepth	N	0	Р	Q mm	R	S	Т	U
HD 037	-8 ¹	1.33	4.76	1.37	2.15	3.51	2.96	2.22	AF36	1.95	3	1.56	3.51	2.83	AF24	3.49	□ 1.18	0.98	3.55
HD 057	-8 ¹	1.33	6.55	1.37	2.15	3.51	2.96	2.22	AF36	1.95	3	1.56	3.51	2.83	AF24	3.49	□ 1.18	0.98	3.55
HD 077	-12 ²	1.40	8.54	1.37	2.15	3.51	2.96	2.22	AF36	1.95	3	1.56	3.51	2.83	AF24	3.49	□ 1.18	0.98	3.55
HD 097	-12 ²	1.40	10.18	1.37	2.15	3.51	2.96	2.22	AF36	1.95	3	1.56	3.51	2.83	AF24	3.49	□ 1.18	0.98	3.55

¹ Corresponds to ¾ UNF-2B

www.argo-hytos.com

² Corresponds to ¹¹/₁₆-12 UN-2B

³ ⁵/₁₆-18 UNC-2B / 0.63

Spare Parts

Pos.	Designation	Part No.
1	Filter bowl HD 037 (with pos. 2)	HD 037.0701
1	Filter bowl HD 057 (with pos. 2)	HD 057.0701
1	Filter bowl HD 077 (with pos. 2)	HD 077.0701
1	Filter bowl HD 097 (with pos. 2)	HD 097.0701
2	O-ring 66 x 2.62 mm 2.60 x 0.10 inch	N007.0673
3	Replacement filter element	see Chart/col. 9
4	Clogging indicator	see catalog sheet 60.40

The functions of the complete filters as well as the outstanding features of the filter elements assured by ARGO-HYTOS can only be guaranteed if original ARGO-HYTOS spare parts are used.

Quality Assurance

Quality management according to DIN EN ISO 9001

To ensure constant quality in production and operation, ARGO-HYTOS filter elements undergo strict controls and tests according to the following ISO standards:

ISO 2941	Verification of collapse / burst pressure rating
ISO 2942	Verification of fabrication integrity (Bubble Point Test)
ISO 2943	Verification of material compatibility with fluids
ISO 3968	Evaluation of pressure drop versus flow characteristics
ISO 16889	Multi-Pass-Test (evaluation of filter fineness and dirt-holding capacity)
ISO 23181	Determination of resistance to flow fatigue using high viscosity fluid

Before release into the series production the filter casing is tested for fatigue strength in our pressure pulse test rig. Various quality controls during the production process guarantee the leakfree function and solidity of our filters.

Illustrations may sometimes differ from the original. ARGO-HYTOS is not responsible for any unintentional mistake in this specification sheet.

Page 306 www.argo-hytos.com