Gear Pump – Lightline Version

GP3L

Displacement up to 71 cm³ (4.30 inch³) • p\text{max} 280 bar (4060 PSI) • Speed from 400 to 3500 RPM

Technical Features

› Operating pressure 250 bar, Peak pressure 280 bar
› Cost effective design for circuits with a lower operating pressure
› High quality aluminum alloys pump with axial play compensation
› Service life for 1800 operation hours
› Volumetric efficiency up to 96%
› International standard flanges acc.to SAE, ISO, DIN, GOST

Technical Data

<table>
<thead>
<tr>
<th>Nominal Size Parameters</th>
<th>Symbol</th>
<th>Unit</th>
<th>Displacement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>cm³</td>
<td>20 22 26 33 39 46 50 52 55 63 71</td>
</tr>
<tr>
<td>Actual displacement</td>
<td>V\textsubscript{g}</td>
<td>in³</td>
<td>1.22 1.34 1.59 2.01 2.38 2.81 3.05 3.17 3.36 3.84 4.33</td>
</tr>
<tr>
<td>Rotation speed</td>
<td></td>
<td>min⁻¹</td>
<td>1500</td>
</tr>
<tr>
<td>nominal</td>
<td>n\textsubscript{n}</td>
<td></td>
<td>600 500 400</td>
</tr>
<tr>
<td>minimum</td>
<td>n\textsubscript{min}</td>
<td></td>
<td>3500 3000 2800 2500</td>
</tr>
<tr>
<td>maximum</td>
<td>n\textsubscript{max}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure at inlet**</td>
<td>p\textsubscript{1\text{min}}</td>
<td>bar</td>
<td>-0.3 (-4.4 PSI)</td>
</tr>
<tr>
<td>maximum</td>
<td>p\textsubscript{1\text{max}}</td>
<td>bar</td>
<td>0.5 (7.3 PSI)</td>
</tr>
<tr>
<td>Pressure at outlet**</td>
<td>p\textsubscript{2\text{max}}</td>
<td>bar</td>
<td>250 230 220 200 180</td>
</tr>
<tr>
<td>maximum</td>
<td>p\textsubscript{2\text{max}}</td>
<td>bar</td>
<td>3626 3336 3191 2901 2611</td>
</tr>
<tr>
<td>peak</td>
<td>p\textsubscript{3}</td>
<td>bar</td>
<td>3844 3626 3481 3336 2901</td>
</tr>
<tr>
<td>Weight</td>
<td>m</td>
<td>kg</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>lbs</td>
<td></td>
</tr>
</tbody>
</table>

1) *Inlet pressure in the reversible design can be up to p\textsubscript{1} = p\textsubscript{2\text{max}} - 70 bar max. External drainage must be used in case of the reversible design.
2) **Outlet pressure in the reversible design is 10% lower than shown in the table (depending on operating conditions).
3) p\textsubscript{2\text{max}} maximum continuous pressure - maximum working pressure, at which the pump can be operated without time limitation.
4) p\textsubscript{max} maximum pressure - maximum pressure permissible for a short time, max. 20 s.
5) p\textsubscript{3} peak pressure - short-time pressure (fractions of a second) arising in case of a sudden change of the operating mode; any excess of this pressure during operation is impermissible.

Gear Pump / Size

Volumetric efficiency	%	89 ÷ 96
Mechanical efficiency	%	85
Fluid temperature range (NBR)	^\circ C (^\circ F)	-20...80 (-4...176)
Fluid temperature range (FPM)	^\circ C (^\circ F)	-20...120 (-4...248)
Viscosity range	mm²/s (SUS)	20...80 (97...390), 1200 (5849) for cold start
Hydraulic fluid		Hydraulic oils of power classes (HL, HLP) to DIN 51524
Max. degree of fluid contamination for p\textsubscript{2≤}200 bar		Class 21/18/15 acc. to ISO 4406
Max. degree of fluid contamination for p\textsubscript{2≥}200 bar		Class 20/17/14 acc. to ISO 4406
Direction of rotation, reversible design

Determine direction of rotation by looking at the drive shaft. The pump can be used only in the specified direction of rotation.

The pumps B codes (Bi-directional) have an external drainage with an orifice located in the cover or the flange.

Ordering Code

Gear pump serie 3

Displacement

Direction of rotation
Counter clockwise
Clockwise
Bi-directional

Flange design

Shaft Type

Combination of Flanges and Shafts

<table>
<thead>
<tr>
<th>Flange Design</th>
<th>RL</th>
<th>RN</th>
<th>SC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shaft Type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DN</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VO</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Port orientation

S
R
C
Flange design in millimeters (inches)

RL

SC

Shaft design in millimeters (inches)

CL

CM

DN

DP

VO

VP
Ports design in millimeters (inches)

BSPP pipe thread according to 228-1

<table>
<thead>
<tr>
<th>Displacement (cm³)</th>
<th>Inlet Code</th>
<th>Dimension</th>
<th>Outlet Code</th>
<th>Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 - 22 (1.22 - 1.34) including</td>
<td>GD</td>
<td>G 3/4</td>
<td>16 (0.63)</td>
<td>39 (1.54)</td>
</tr>
<tr>
<td>26 - 39 (1.59 - 2.38) including</td>
<td>GE</td>
<td>G 1</td>
<td>18 (0.71)</td>
<td>45 (1.77)</td>
</tr>
<tr>
<td>46 - 63 (2.81 - 3.84) including</td>
<td>GF</td>
<td>G 1 1/4</td>
<td>57 (2.24)</td>
<td>1 (0.04)</td>
</tr>
<tr>
<td>71 (4.33)</td>
<td>GH</td>
<td>G 1 1/2</td>
<td>60 (3.66)</td>
<td>1 (0.04)</td>
</tr>
</tbody>
</table>

UNF thread according to SAE

<table>
<thead>
<tr>
<th>Displacement (cm³)</th>
<th>Inlet Code</th>
<th>Dimension</th>
<th>Outlet Code</th>
<th>Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 - 33 (1.22 - 2.01) including</td>
<td>UH</td>
<td>1-5/16-12UNF</td>
<td>23 (0.91)</td>
<td>49 (1.93)</td>
</tr>
<tr>
<td>39 - 52 (2.38 - 3.17) including</td>
<td>UI</td>
<td>1-5/8-12UNF 2B</td>
<td>1 (0.04)</td>
<td></td>
</tr>
<tr>
<td>55 - 71 (3.36 - 4.33) including</td>
<td>UI</td>
<td>1-7/8-12UNF</td>
<td>1 (0.04)</td>
<td></td>
</tr>
</tbody>
</table>

Flanged fittings according to DIN 8901/8902

<table>
<thead>
<tr>
<th>Displacement (cm³)</th>
<th>Inlet Code</th>
<th>Dimension</th>
<th>Outlet Code</th>
<th>Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 - 33 (1.22 - 2.01) including</td>
<td>UH</td>
<td>1-5/16-12UNF</td>
<td>23 (0.91)</td>
<td>49 (1.93)</td>
</tr>
<tr>
<td>39 - 52 (2.38 - 3.17) including</td>
<td>UI</td>
<td>1-5/8-12UNF 2B</td>
<td>1 (0.04)</td>
<td></td>
</tr>
<tr>
<td>55 - 71 (3.36 - 4.33) including</td>
<td>UI</td>
<td>1-7/8-12UNF</td>
<td>1 (0.04)</td>
<td></td>
</tr>
</tbody>
</table>

Flanged fittings according to SAE, UNC thread

<table>
<thead>
<tr>
<th>Displacement (cm³)</th>
<th>Inlet Code</th>
<th>Dimension</th>
<th>Outlet Code</th>
<th>Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 - 33 (1.22 - 2.01) including</td>
<td>AC</td>
<td>3/8-16-UNC</td>
<td>52,4 (2.06)</td>
<td>26,2 (1.03)</td>
</tr>
<tr>
<td>39 - 52 (2.38 - 3.17) including</td>
<td>AD</td>
<td>7/16-14-UNC</td>
<td>58,7 (2.31)</td>
<td>30,2 (1.19)</td>
</tr>
<tr>
<td>55 - 71 (3.36 - 4.33) including</td>
<td>AD</td>
<td>7/16-14-UNC</td>
<td>52,4 (2.06)</td>
<td>26,2 (1.03)</td>
</tr>
</tbody>
</table>

GPP Pumps - basic design in millimeters (inches)

<table>
<thead>
<tr>
<th>Displacement (cm³)</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 (1.22)</td>
<td>63 (2.48)</td>
<td>128 (5.04)</td>
</tr>
<tr>
<td>22 (1.34)</td>
<td>64 (2.52)</td>
<td>130 (5.12)</td>
</tr>
<tr>
<td>25 (1.59)</td>
<td>65 (2.56)</td>
<td>133 (5.24)</td>
</tr>
<tr>
<td>28 (1.61)</td>
<td>68 (2.68)</td>
<td>139 (5.47)</td>
</tr>
<tr>
<td>32 (1.97)</td>
<td>72 (2.83)</td>
<td>146 (5.75)</td>
</tr>
<tr>
<td>46 (2.81)</td>
<td>75 (2.95)</td>
<td>152 (5.98)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Displacement (cm³)</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 (1.22)</td>
<td>50 (3.05)</td>
<td>77 (3.03)</td>
</tr>
<tr>
<td>22 (1.34)</td>
<td>52 (3.17)</td>
<td>78 (3.07)</td>
</tr>
<tr>
<td>25 (1.59)</td>
<td>55 (3.36)</td>
<td>79 (3.11)</td>
</tr>
<tr>
<td>28 (1.61)</td>
<td>63 (3.84)</td>
<td>83 (3.27)</td>
</tr>
<tr>
<td>32 (1.97)</td>
<td>71 (4.33)</td>
<td>86 (3.39)</td>
</tr>
</tbody>
</table>